On computing the zeros of periodic systems

نویسندگان

  • Andras Varga
  • Paul Van Dooren
چکیده

We present an efficient and numerically reliable approach to compute the zeros of a periodic system. The zeros are defined in terms of the transfer-function matrix corresponding to an equivalent lifted statespace representation as constant system. The proposed method performs locally row compressions of the associated system pencil to extract a low order pencil which contains the zeros (both finite and infinite) as well as the Kronecker structure of the periodic system. The proposed algorithm belongs to the family of fast, structure exploiting algorithms and relies exclusively on using orthogonal transformations. For the overall zeros computation a certain form of numerical stability can be ensured.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Further Observations on Blocking Zeros in Linear Muitivariabie systems (RESEARCH NOTE).

While attempting to clarify the confusion concerning the conceptualization of "blocking zeros" in state space in the recent literature, some new observations are made on the relationship between pole-zero cancellation and transmission blocking. An important distinction between uncontrollable and unobservable eigenvalue s is pointed out; and it is argued that the description of a Blocking Zero, ...

متن کامل

Computing the zeros of periodic descriptor systems

In this paper, we give a numerically reliable algorithm to compute the zeros of a periodic descriptor system. The algorithm is a variant of the staircase algorithm applied to the system pencil of an equivalent lifted time-invariant state-space system and extracts a low-order pencil which contains the zeros (both 6nite and in6nite) as well as the Kronecker structure of the periodic descriptor sy...

متن کامل

On the Zeros of Discrete-time Linear Periodic Systems*

Discrete-time linear periodic single-input/single-output (SISO) systems having uniform relative degree are considered. A closed-form expression of the blocking input is derived and exploited to obtain a computationally advantageous characterization of the structural zeros. Indeed, it suffices to compute the eigenvalues of a suitably defined (n • n) matrix, where n is the system order. It is sho...

متن کامل

On Zeros of Tall, Fat and Square Blocked Time-Invariant Systems ∗ †

The well-known technique of blocking or lifting has been used in systems and control [5], [2]. This method has mostly been exploited to transform linear discrete-time periodic systems to linear time-invariant systems so that the well-developed tools for linear time-invariant systems can be extended for design and analysis of linear discrete-time periodic systems [3], [1] and [2] . For example, ...

متن کامل

Strongly stable algorithm for computing periodic system zeros

We propose a computationally efficient and numerically reliable algorithm to compute the finite zeros of a linear discrete-time periodic system. The zeros are defined in terms of the transfer-function matrix corresponding to an equivalent lifted time-invariant state-space system. The proposed method relies on structure preserving manipulations of the associated system pencil to extract successi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002